Predictive of the quantum capacitance effect on the excitation of plasma waves in graphene transistors with scaling limit.

نویسندگان

  • Lin Wang
  • Xiaoshuang Chen
  • Yibin Hu
  • Shao-Wei Wang
  • Wei Lu
چکیده

Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8 TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5 TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons

We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...

متن کامل

Quantum modeling of light absorption in graphene based photo-transistors

Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...

متن کامل

pH Effect on the Size of Graphene Quantum dot Synthesized by Using Pulse Laser Irradiation

In this study graphene oxide (GO) was synthesized by using Hummer’s method. Low dimension graphene quantum dot nanoparticles (GQDs) were synthesized using pulse laser irradiation. Fourier Transform-Infrared Spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) spectroscopy and photoluminescence (PL) analysis were applied to study the GQDs characteristic. Scanning electron microscopy illustrated the...

متن کامل

Design and Optimization of Input-Output Block using Graphene Nano-ribbon Transistors

In the electronics industry, scaling and optimization is final goal. But, according to ITRS predictions, silicon as basic material for semiconductors, is facing physical limitation and approaching the end of the path. Therefore, researchers are looking for the silicon replacement. Until now, carbon and its allotrope, graphene, look to be viable candidates. Among different circuits, IO block is ...

متن کامل

Conduction coefficient modeling in bilayer graphene based on schottky transistors

Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 16  شماره 

صفحات  -

تاریخ انتشار 2015